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Abstract
Purpose  In PSMA-ligand PET/CT imaging, standardized evaluation frameworks and image-derived parameters are increas-
ingly used to support prostate cancer staging. Clinical applicability remains challenging wherever manual measurements 
of numerous suspected lesions are required. Deep learning methods are promising for automated image analysis, typically 
requiring extensive expert-annotated image datasets to reach sufficient accuracy. We developed a deep learning method to 
support image-based staging, investigating the use of training information from two radiotracers.
Methods  In 173 subjects imaged with 68Ga-PSMA-11 PET/CT, divided into development (121) and test (52) sets, we trained 
and evaluated a convolutional neural network to both classify sites of elevated tracer uptake as nonsuspicious or suspicious 
for cancer and assign them an anatomical location. We evaluated training strategies to leverage information from a larger 
dataset of 18F-FDG PET/CT images and expert annotations, including transfer learning and combined training encoding the 
tracer type as input to the network. We assessed the agreement between the N and M stage assigned based on the network 
annotations and expert annotations, according to the PROMISE miTNM framework.
Results  In the development set, including 18F-FDG training data improved classification performance in four-fold cross 
validation. In the test set, compared to expert assessment, training with 18F-FDG data and the development set yielded 80.4% 
average precision [confidence interval (CI): 71.1–87.8] for identification of suspicious uptake sites, 77% (CI: 70.0–83.4) 
accuracy for anatomical location classification of suspicious findings, 81% agreement for identification of regional lymph 
node involvement, and 77% agreement for identification of metastatic stage.
Conclusion  The evaluated algorithm showed good agreement with expert assessment for identification and anatomical 
location classification of suspicious uptake sites in whole-body 68Ga-PSMA-11 PET/CT. With restricted PSMA-ligand data 
available, the use of training examples from a different radiotracer improved performance. The investigated methods are 
promising for enabling efficient assessment of cancer stage and tumor burden.
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Introduction

Accurate staging has a pivotal role in the management of 
prostate cancer, a disease with generally favorable out-
come when confined to the prostate, while having poor 
prognosis if metastasized at the time of diagnosis [1]. As 
a plethora of management strategies is available, rang-
ing from watchful waiting to localized and systemic treat-
ments, reliable information on the disease spread pattern 
and overall burden is crucial in the clinical decision-
making process [2]. While the gold standard for pros-
tate cancer staging remains histopathology, imaging is 
increasingly being utilized as noninvasive assessment [3]. 
Notably, prostate-specific membrane antigen (PSMA)-
targeted PET/CT has shown high accuracy, superior to 
other imaging modalities, for primary staging of high-risk 
prostate cancer patients [4, 5] as well as for staging after 
biochemical recurrence [6, 7]. The 68Ga-PSMA-11 com-
pound manufactured by the University of California, San 
Francisco, and the University of California, Los Angeles, 
has recently received approval from the U.S. Food and 
Drug Administration.

In addition to procedure guidelines [8], pitfalls reviews 
[9–11], and case reports [12, 13], standardized reporting 
frameworks for PSMA-ligand PET have been proposed to 
support replicable and rigorous image assessment [14–16]. 
Moreover, the use of quantitative image-derived biomark-
ers, such as the total tumor volume, has shown promis-
ing results for risk stratification and response assessment 
[17–20]. Nevertheless, the application in clinical routine 
of detailed reporting schemes and image-derived biomark-
ers remains labor intensive, subject to error, and operator 
dependent in cases where a high number of manual meas-
urements are required, such as when categorical or quan-
titative variables have to be determined for all suspected 
lesions. In this context, the use of semi-automated and 
automated image analysis methods is promising to sup-
port accurate, reproducible, and time-efficient assessment.

Recently, semi-automated and automated methods 
for image analysis in 68Ga-PSMA-11 PET/CT have been 
developed. A convolutional neural network (CNN) was 
trained to predict the PSMA-ligand PET positivity sta-
tus of lymph nodes from CT alone [21], showing a per-
formance comparable to trained radiologists. To support 
semi-automated quantification of tumor burden, masks of 
organs that exhibit physiological uptake and bone were 
obtained from CT images using thresholding methods 
[22, 23], machine learning methods [24], and deep learn-
ing methods [18]. While the CT information alone can be 
used to aid semi-automated identification and anatomical 
localization of suspicious elevated uptake sites, includ-
ing the PET information in a machine learning system for 

whole-body PSMA-ligand image analysis could be ben-
eficial. In particular, the identification of elevated uptake 
regions as physiological based on automated analysis of 
the sole CT information is particularly challenging for 
regions such as small intestines or ureters and would 
require manual corrections. A machine learning algorithm 
trained on multimodal PET/CT information may more 
accurately identify such regions of physiological uptake 
limiting the number of manual corrections required, as 
well as potentially being able to identify further challeng-
ing patterns of nonsuspicious uptake, such as uptake in 
ganglia and unspecific uptake in lymph nodes and bone. 
Recently, a convolutional neural network was trained with 
multimodal PET/CT information to identify tracer uptake 
regions suspicious for prostate cancer within the pelvis 
[25] with promising results.

In the current analysis, we developed and evaluated a 
multi-task convolutional neural network trained on the PET 
and CT information for the identification and anatomical 
location classification of suspicious tracer uptake sites in 
the entire axial body coverage of the scan. We employ multi-
task training, previously evaluated in 18F-FDG PET/CT [26] 
with encouraging results, for assessment of 68Ga-PSMA-11 
images. In addition, we explore two strategies to leverage 
training information from both radiotracers: transfer learn-
ing by pretraining on 18F-FDG images with fine-tuning on 
68Ga-PSMA-11 images and a modified network architecture 
for synergistic dual-tracer learning. Moreover, we assess the 
ability of the trained network to support prostate cancer stag-
ing by evaluating its performance in automatically determin-
ing the N and M stage according to the PROMISE miTNM 
[14] framework.

Materials and methods

Patients

Two groups of subjects who underwent 68Ga-PSMA-11 
PET/CT at the Klinikum rechts der Isar (Technical Univer-
sity of Munich) were retrospectively analyzed. The rationale 
for the definition and inclusion of the two groups was to 
allow the representation of different disease stages in the 
training dataset while keeping an acceptable expected anno-
tation workload for the expert readers, employing a different 
annotation scheme for each group. The first group, referred 
to as group A, consisted of 123 consecutive subjects referred 
to PSMA-ligand PET/CT for primary staging or for assess-
ment of biochemical recurrence. The second group, referred 
to as group B, consisted of 50 consecutive subjects referred 
to PSMA-ligand PET/CT for all indications of prostate 
cancer. PET/CT images were acquired on a Biograph mCT 
scanner (Siemens Medical Solutions). Diagnostic CT scans 
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were acquired after intravenous injection of contrast agent 
(Imeron 300), followed by PET acquisition. PET scans were 
acquired 54 ± 10 min (mean ± std) after injection of 68Ga-
PSMA-11 ligand solution (149 ± 26 MBq), with acquisition 
time of 3–4 min per bed position.

Image analysis

Data annotation

PET/CT images were reviewed by expert nuclear medicine 
physicians who segmented sites of elevated tracer uptake, 
labeled them as nonsuspicious or suspicious for prostate 
cancer, and assigned them an anatomical localization from 
a set of physiological uptake sites and sites relevant for 
staging. Due to differences in patient tumor burden and 
to maintain an acceptable annotation workload, different 
annotation schemes were used for subjects in group A and 
group B, which were then considered in the deep learning 
model development and validation. For subjects in group 
A, having a low tumor burden, all regions of elevated tracer 
uptake were segmented semi-automatically using 45% of 
region SUVmax thresholding [19]. For subjects in group B, 
which included cases of high tumor burden, all high-uptake 
sites with SUVmax above the average liver uptake within a 
PERCIST-based reference region [27] were segmented with 
an incremental connected component algorithm [28] using 
45% of SUVmax thresholding, of which up to one hundred 
sites per subject with the highest SUVmax were annotated. 
For each subject in group B, at least ten suspicious uptake 
sites were annotated when present, additionally labeling sites 
with lower SUVmax if necessary.

Model development

Subjects of group A (n = 123) were assigned to an N and 
M stage based on expert annotations and following the 
PROMISE miTNM framework. A stratified split of subjects 
in group A based on stage was then performed forming a 
development (n = 71) and a hold-out test set (n = 52). All 
subjects of group B (n = 50) were added to the development 
set. Four-fold cross validation on the final development 
set (n = 121) was used to evaluate different model training 
schemes. The hold-out test set was used exclusively to report 
results of the model testing and was not employed for the 
model development. A diagram summarizing the dataset 
split is reported in Supplemental Fig. 1.

A multi-task convolutional neural network was trained 
to both classify PET/CT regions of interest as uptake sus-
picious or nonsuspicious for cancer and assign them an 
anatomical location classification. In addition to expert-
annotated findings, regions of interest with SUVmax above 
1 which were not labeled by the experts as suspicious were 

generated automatically with an incremental connected com-
ponent algorithm [28], labeled as nonsuspicious, and used 
for training. These were generated using 45% of SUVmax 
thresholding and only for subjects in group A or subjects in 
group B with up to nine suspicious findings, i.e., for PET/
CT images where all suspicious findings were annotated and 
remaining image regions could be considered physiological 
uptake. The network architecture and hyperparameters are 
illustrated in Fig. 1a. Inputs to the network are thirteen PET/
CT coronal (192 mm × 192 mm) reformations extracted with 
offsets (− 144, − 96, − 48, − 24, − 12, − 6, 0, + 6, + 12, + 24, 
+ 48, + 96, + 144 mm) from the region of interest SUVmax 
position, after resampling of PET and CT at 3 mm isotropic 
resolution, PET windowing between 0 and 15 SUV and CT 
windowing between − 300 and 300 HU.

We evaluated different training strategies to improve the 
algorithm performance. First (I), the model was trained with 
sequential sampling of all the training examples. Second 
(II), a balanced sampling of the training examples was per-
formed, where a fixed maximum number of training exam-
ples per class per subject was randomly sampled at each 
training epoch (maximum of 32 physiological and 32 suspi-
cious findings, 4 findings for each anatomical location class). 
Third (III), regions of interest used for training were aug-
mented through affine transformations of the PET/CT ran-
domly generated at each training epoch with isotropic scal-
ing between 0.8 and 1.2 and rotations between − 17.2 and 
17.2 degrees in all directions, to obtain additional regions 
with plausible pose and size. Forth (IV), to leverage expert 
knowledge of the same task in 18F-FDG PET/CT images, 
we trained the network as in (III) with datasets from [26], 
with a single split between training (90%) and validation 
(10%). The rationale for the 18F-FDG dataset split was to 
maximize the training data for knowledge transfer to PSMA-
ligand PET/CT, while evaluation on a hold-out 18F-FDG 
test set was considered outside the scope of the analysis, 
which is mainly focused on assessing the proposed method 
for staging support in PSMA-ligand PET/CT. Fifth (V), we 
evaluated transfer learning by fine tuning on PSMA-ligand 
PET/CT data the network weights initially trained with 18F-
FDG PET/CT images. Sixth (VI), we evaluated simultane-
ous training with PSMA-ligand and FDG PET/CT images 
by adding a binary input encoding the tracer type to the first 
fully connected layer and only for the output branch of the 
network responsible for classifying nonsuspicious vs. suspi-
cious uptake, as illustrated in Fig. 1b.

Model testing

We validated the network with the highest performance by 
training it on the entire development set and evaluating it on 
the test set. In addition, we assessed the ability of the algo-
rithm to determine the N and M stage from 68Ga-PSMA-11 
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PET/CT images fully automatically. For each test set sub-
ject, we first segmented all regions with SUVmax above 1 
using an incremental connected component algorithm [28] 
and 45% of SUVmax thresholding. These regions were then 
processed by the convolutional neural network, classified 
as nonsuspicious or suspicious, and assigned an anatomi-
cal location label. The anatomical location labels of regions 
classified as suspicious were used to obtain a prediction 
of the N and M stage according to the PROMISE miTNM 

framework. Following PROMISE recommendations, a dis-
tinction between patterns of bone metastases was consid-
ered. No subject presented diffuse bone marrow involve-
ment. This resulted in three N stage categories, related to 
regional lymph node metastases: N0 (none), N1 (single), 
N2 (multiple); and six M stage categories, related to dis-
tant metastases: M0 (none), M1a (extrapelvic lymph nodes), 
M1b/u (single bone lesion, unifocal), M1b/o (up to three 
multiple bone lesions, oligometastatic), M1b/d (four or more 

Fig. 1   Convolutional neural network architecture used for PET uptake 
classification when training a with data from a single radiotracer and 
b with data from two radiotracers, encoding the tracer type as input 
to the network. Multiplanar reformations (MPRs) extracted from a 

region of interest being classified are represented as exemplar input 
to the network. In the three-dimensional illustration, numbers along 
layers’ edges indicate the size of the feature maps resulting as output 
of the corresponding layers
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bone lesions, disseminated), M1c (other organs). Predictions 
of the N and M stage were then compared to the ones based 
on expert annotations.

Statistical analysis

The main metrics used to evaluate the network performance 
were the area under the precision-recall curve, which 
accounts for marked class imbalance, referred to as average 
precision (AP), for the classification of regions as suspicious 
or nonsuspicious, and the classification accuracy of regions 
labeled as suspicious by the experts, for the anatomical loca-
tion classification. The performance metrics were evaluated 
by pooling findings of all subjects together, and a 95% confi-
dence interval was calculated by 2000 bootstrap resampling 
of the subjects. To compare different training schemes on the 
development set, a two-sided paired z-test was performed 
based on the bootstrap replicates with a significance level set 
to 5%. Bonferroni correction was used to account for mul-
tiple comparisons. For the test set, additional performance 
metrics were evaluated: number of true positives, false posi-
tives, false negatives, recall and positive predictive value for 
the classification as suspicious or nonsuspicious, classifica-
tion accuracy of all findings labeled by the experts for the 
anatomical location classification. For the test set, except 
for the average precision, the performance metrics were also 
evaluated and reported on a per-subject basis. Agreement 
between the N and M stage estimated using the CNN and 
determined from the expert labels was assessed using per-
cent agreement and confusion matrices.

Results

In total, 173 subjects were included in the analysis of which 
123 in group A and 50 in group B. A total of 5,577 high 
uptake regions were annotated, of which 4,520 were physi-
ological uptake and 1,057 were suspicious uptake. The 
median volume of regions annotated as suspicious was 
1.3 ml (interquartile range 0.6–3.0 ml). In addition to the 
expert-annotated findings, more than 160,000 regions with 
nonsuspicious uptake were automatically generated for sub-
jects in the development set. A summary of the findings 
and expert annotations is reported in Supplemental Table 1. 
Based on the expert annotations of subjects in group A, 52 
patients had miN0 stage, 40 had miN1 stage, and 31 had 
miN2 stage, whereas 41 subjects had miM0 stage, 21 had 
miM1a stage, 57 had miM1b stage, and 4 had miM1c stage. 
A summary of the N and M stage for subjects in group A is 
reported in Supplemental Table 2.

Figure 2 illustrates results obtained using different meth-
ods to train the CNN, evaluated with cross validation on 
the development dataset of 68Ga-PSMA-11 PET/CT images. 
The corresponding main performance metrics are summa-
rized in Table 1. For the classification of findings as sus-
picious or nonsuspicious, using sequential sampling (I) as 
baseline [AP: 84.1, confidence interval (CI): 76.2–89.3], a 
performance improvement not statistically significant after 
applying Bonferroni correction was found with other train-
ing schemes including balanced sampling (II) (AP: 85.0, 
CI: 77.5–89.8, p = 0.197), its combination with affine (III) 
data augmentation (AP: 87.0, CI: 81.0–91.3, p = 0.067), and 
their combination with transfer learning (V) (AP: 87.7, CI: 

Fig. 2   Performance obtained for 
a classification of PET uptake 
sites as nonsuspicious or suspi-
cious and b classification of 
their anatomical location, using 
different strategies to train a 
convolutional network evaluated 
with four-fold cross valida-
tion on the development set of 
68Ga-PSMA-11 PET/CT scans. 
Performance metrics are deter-
mined by pooling findings of 
all subjects together. Error bars 
indicate the 95% confidence 
interval obtained via bootstrap 
resampling at subject level
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82.3–91.8, p = 0.072) or combined training with 18F-FDG 
data (VI) (AP: 87.9, CI: 82.3–91.7, p = 0.047). Balanced 
sampling allowed markedly lower training time due to fewer 
training examples being processed on average per epoch 
(3584 vs. 128,640). For the anatomical location classifica-
tion of suspicious findings, compared to sequential (I) sam-
pling (accuracy: 64.9, CI: 59.8–70.9), affine data augmen-
tation (III) significantly improved performance (accuracy: 
72.7, CI: 68.5–77.1, p < 0.001) while balanced sampling 
(II) alone did not (accuracy: 66.8, CI: 61.5–73.4, p = 0.095). 
Compared to affine data augmentation (III), transfer learn-
ing (V) showed a further significant improvement (accuracy: 
79.2, CI: 75.1–82.7, p = 0.001), with a performance not sig-
nificantly different compared to combined training with 18F-
FDG data (VI) (accuracy: 80.0, CI: 74.8–84.1, p = 0.489), 
which overall scored highest for both classification tasks.

Following combined training using 18F-FDG images 
together with 68Ga-PSMA-11 scans of the entire develop-
ment set and evaluation on the 68Ga-PSMA-11 test set, an 
average precision of 80.4 (CI: 71.1–87.8), a sensitivity of 
81.1% (CI: 70.6–90.1), and a positive predictive value of 
66.8% (CI: 60.3–72.7) were obtained (Table 2). Anatomical 
location classification accuracy was 77.0% (CI: 70.0–83.4) 
for suspicious regions and 94.4% (92.4–96.1) for all expert-
annotated regions. Figure 3 shows an example subject in 
the test dataset assessed using the CNN. After assigning 
an N stage based on CNN annotations and based on expert 
annotations, agreement was 67%, while agreement for iden-
tification of any pelvic nodal involvement (N0 vs. N1/N2) 
was 81%. The confusion matrix for the N stage assessment is 
shown in Table 3. After assigning an M stage based on CNN 

annotations and based on expert annotations, agreement was 
62%, agreement excluding discrimination of bone involve-
ment pattern was 73%, and agreement for identification of 
any distant metastases (M0 vs. M1) was 77%. The confusion 
matrix for the M stage assessment is shown in Table 4.

Discussion

In this analysis, we showed that a convolutional neural 
network can be trained to classify sites of elevated 68Ga-
PSMA-11 uptake in the entire axial body coverage of the 
scan by leveraging both PET and CT information. Having 
extensively included in the training data regions with uptake 
above 1 SUV, the network can be used to assess a broad 
window of the tracer distribution in the body and effectively 
identify sites suspicious for prostate cancer. Moreover, 
thanks to the combined identification of suspicious uptake 
sites and the classification of their anatomical location, the 
network can be used to assess the spread pattern of sus-
picious sites in different organs and tissues and was able 
to determine the N and M stage according to the PROM-
ISE miTNM framework in good agreement with the expert 
evaluation. Additionally, we found that including training 
information from PET/CT images and expert annotations 
obtained with a different PET tracer improved the network 
performance on 68Ga-PSMA-11 PET/CT images, for which 
a limited number of reader-annotated cases were available. 
Previously described methods for 68Ga-PSMA-11 PET/CT 
image analysis using machine learning were trained on PET/
CT information to identify suspicious uptake regions limited 

Table 1   PET uptake classification performance using different strate-
gies to train a convolutional network, evaluated with four-fold cross 
validation on a development set of 68Ga-PSMA-11 PET/CT scans and 
a fixed validation dataset of 18F-FDG PET/CT scans. Performance 

metrics are determined by pooling findings of all subjects together, 
with a 95% confidence interval obtained via bootstrap resampling at 
subject level, reported in brackets. The p value for a two-sided paired 
z-test based on bootstrap replicates is reported

a Average precision
*Significant

Tracer 68Ga-PSMA-11 18F-FDG

Classification output Nonsuspicious vs. suspicious Anatomical location Nonsuspicious vs. suspicious Anatomical location

Performance metric APa Accuracysuspicious APa Accuracysuspicious

Model training
I: Sequential sampling 84.1 (76.2, 89.3) 64.9 (59.8, 70.9) - -
II: Balanced sampling 85.0 (77.5, 89.8)

p = 0.197 vs. I
66.8 (61.5, 73.4)
p = 0.095 vs. I

- -

III: II + Affine transformations 87.0 (81.0, 91.3)
p = 0.067 vs. I

72.7 (68.5, 77.1)
p < 0.001* vs. I

- -

IV: III on 18F-FDG data - - 77.1 (70.8, 87.3) 76.7 (71.2, 81.3)
V: Transfer learning by fine tuning 

of IV
87.7 (82.3, 91.8)
p = 0.072 vs. I

79.2 (75.1, 82.7)
p = 0.001* vs. III

- -

VI: III + combined training on 68Ga-
PSMA-11 and 18F-FDG data

87.9 (82.3, 91.7)
p = 0.047 vs. I

80.0 (74.8, 84.1)
p = 0.489 vs. V

77.9 (71.0, 86.5)
p = 0.739 vs. III

77.2 (71.1, 81.2)
p = 0.681 vs. III



European Journal of Nuclear Medicine and Molecular Imaging	

1 3

to the pelvis [25] or were trained on CT-only information to 
segment a predefined set of organs and then used to guide 
semi-automated identification of suspicious high uptake 
regions in the whole body [18, 24].

In the current analysis, regions of interest were segmented 
both by the expert reader as well as for the network training 

and validation using methods based on thresholding, which 
allow limited flexibility and accuracy in delineating con-
tours. Although the threshold-based segmentation methods 
used have limited accuracy, these offer a practical solution 
for rapid semi-automated annotation by an expert reader, 
they are often used in clinical practice and research studies 

Fig. 3   a Coronal and d sagittal 
maximum intensity projections 
(MIP) of a 68Ga-PSMA-11 PET 
scan for a subject in the test set. 
b, e Regions of interest classi-
fied by the convolutional neural 
network as suspicious overlayed 
to the PET MIP in yellow, 
together with the anatomical 
location label assigned by the 
network. c, f Regions of interest 
identified by an expert physician 
as suspicious uptake overlayed 
to the PET MIP in yellow, 
together with the anatomical 
location label assigned by the 
expert

Table 2   PET uptake 
classification performance 
obtained with combined training 
of a convolutional neural 
network using 68Ga-PSMA-11 
PET/CT and 18F-FDG PET/CT 
scans, evaluated on a hold-out 
test dataset of 68Ga-PSMA-11 
PET/CT scans. Performance 
metrics determined by pooling 
findings of all subjects together 
are reported. Summary statistics 
for performance metrics 
determined at per-subject 
level are also reported. 95% 
confidence intervals obtained 
via bootstrap resampling at 
subject level are reported in 
brackets

a Average precision
b Positive predictive value

Tracer 68Ga-PSMA-11

Classification output Nonsuspicious vs. suspicious

Summary statistic  Pooled (CI) Per-subject

Average Min Q1 Median Q3 Max

Performance metric
APa 80.4 (71.1, 87.8) - - - - - -
Recall 81.1 (70.6, 90.1) 85.2 11.1 73.8 100.0 100.0 100.0
PPVb 66.8 (60.3, 72.7) 65.5 0.0 50.0 68.3 100.0 100.0
True positives 159 (114, 209) 3.1 0 1 2 3 19
False positives 79 (58, 102) 1.5 0 0 1 2 8
False negatives 37 (18, 59) 0.7 0 0 0 1 8
Classification output Anatomical location
Performance metric
Accuracysuspicious 77.0 (70.0, 83.4) 78.4 0.0 57.5 95.0 100.0 100.0
Accuracyall 94.4 (92.4, 96.1) 94.1 78.6 90.9 94.9 100.0 100.0
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on metabolic tumor volume [29], as well as mentioned in 
procedure guidelines [30]. Nonetheless, efforts for stand-
ardizing and advancing segmentation techniques are ongo-
ing, and machine learning-based methods are promising 
for improving automated segmentation accuracy. Nota-
bly, for tumor segmentation in 18F-FDG PET/CT images, 
machine learning methods have recently shown improved 
test–retest repeatability [31] and accuracy [32, 33] com-
pared to thresholding methods, as well as ability to deline-
ate tumor regions in the whole body [34, 35]. While our 
results with 68Ga-PSMA-11 PET/CT images support the use 
of machine learning methods for identification and anatomi-
cal location classification of suspicious uptake sites, future 
analyses are required to evaluate the accuracy and repeat-
ability of different segmentation methods in PSMA-ligand 
images for varying tumor sites in the whole body. Moreover, 
while different software implementations of threshold-based 
segmentation methods were reported to yield comparable 
results for metabolic tumor volume quantification in 68Ga-
PSMA-11 PET/CT scans [36], there may be variations in 
machine learning-based segmentation methods and the con-
cordance and potential standardization of these should also 
be investigated.

A limited number of subjects with advanced prostate can-
cer were included in the analysis and these were used solely 
for the network training. Given the very low tumor burden 
of subjects in the test set, it was not possible within the con-
text of this analysis to evaluate the ability of the proposed 

method to estimate total tumor volume within a wide range 
and in particular for subjects at an advanced stage, for which 
tumor burden may be more informative. Furthermore, the 
majority of uptake regions annotated as suspicious for pros-
tate cancer were in lymph nodes or bone, while suspicious 
findings in other organs were limited. Since the network was 
trained to evaluate single regions of interest, it was possible 
to use PET/CT scans with only partial annotation of suspi-
cious sites for training. This is beneficial since labeling can 
be highly time consuming in cases where a large number of 
lesions need to be fully annotated. Moreover, as the network 
was trained with a variety of regions of interest in the whole 
body, it may prove useful for the staging and tumor burden 
assessment also in subjects with an advanced disease, but 
this will need to be confirmed in future analyses.

The ground truth used to train and evaluate the proposed 
algorithm was determined by visual assessment of the 
images by an expert physician, while neither histopathol-
ogy nor follow-up information was considered. Additionally, 
PET/CT image quality characteristics, such as pitfalls due 
to motion or artifacts, reconstruction settings, and partial 
volume effects may influence the output of the network and 
results will require expert supervision for the use in clinical 
context. Despite the above limitations, the network showed 
good ability to identify even small suspicious sites with a 
limited number of false positives, compared to the expert 
evaluation.

In this analysis, despite the fact that the 18F-FDG PET/
CT datasets were included from a previous investigation and 
not specifically selected for the present survey, we found 
that combining training information from 18F-FDG PET/
CT and 68Ga-PSMA-11 PET/CT led to improved accuracy 
for the identification and anatomical location classification 
of suspicious uptake sites. This result brings forward the 
promising perspective of a deep learning framework for sup-
porting staging and tumor burden assessment in multiple 
cancer types with PET/CT images obtained using different 
tracers. Notably, an increasing variety of PET radiotracers 
is being clinically used and developed in oncology, with 
multiple alternative compounds undergoing clinical trials for 
PSMA-targeted imaging alone. On the one hand, the lesion 

Table 3   Confusion matrix comparing the N stage determined accord-
ing to the PROMISE miTNM framework based on expert annotations 
and based on convolutional neural network annotations

Predicted stage

miN0 miN1 miN2 Total

Annotations stage
miN0 14 7 1 22
miN1 2 11 4 17
miN2 0 3 10 13
Total 16 21 15 52

Table 4   Confusion matrix 
comparing the M stage 
determined according to the 
PROMISE miTNM framework 
based on expert annotations and 
based on convolutional neural 
network annotations

Predicted stage

miM0 miM1a miM1b/u miM1b/o miM1b/d miM1c Total

Annotations stage
miM0 8 5 4 0 0 0 17
miM1a 2 6 1 0 0 0 9
miM1b/u 1 0 7 4 0 1 13
miM1b/o 0 0 0 3 1 0 4
miM1b/d 0 0 0 1 6 0 7
miM1c 0 0 0 0 0 2 2
Total 11 11 12 8 7 3 52
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anatomical spread pattern and tumor volume are meaningful 
biomarkers in different cancer types independently of the 
PET tracer used. On the other hand, with each compound 
having a different biodistribution, training distinct networks 
de novo as a separate solution for each tracer would require a 
significant number of image datasets and expert annotations 
to reach sufficient accuracy. Ideally, combining information 
from multiple diseases and tracers in a single network could 
create synergies, leveraging similarities in physiological 
uptake, tracer excretion patterns, and tumor spread, while 
still accounting for differences based on the provided input 
encoding the tracer type. In the current analysis, perfor-
mance improvements when training with information from 
both 68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT images 
were found mainly for 68Ga-PSMA-11 PET/CT scans, 
having a smaller training dataset. Moreover, a significant 
improvement was found for the task of anatomical location 
classification, possibly driven mainly by the larger CT train-
ing information, while the performance increase in identifi-
cation of suspicious uptake was less pronounced. The overall 
benefit of a combined training approach may depend on the 
level of similarity and the relative frequency of the differ-
ent imaging findings between tracers, and future analyses 
will be required to evaluate the extensibility of the proposed 
framework to additional patient cohorts and radiotracers.

Conclusion

The evaluated convolutional neural network showed good 
agreement with expert assessment for identifying sites of 
suspicious uptake in whole-body 68Ga-PSMA-11 PET/CT, 
assigning them an anatomical location classification, and 
determining the N and M stage according to a standard-
ized framework. Both transfer learning and combined train-
ing using 18F-FDG PET/CT images and expert annotations 
improved performance. The investigated techniques are 
promising for enabling efficient assessment of tumor spread 
and overall burden with established and novel tracers, con-
sidering the limited availability of expert-annotated ground 
truth.
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